
Структура научных революций

- © Перевод. И.З. Налетов, 1974
- © ООО Издательство «АСТ МОСКВА», 2009

Предисловие

Предлагаемая работа является первым полностью публикуемым исследованием, написанным в соответствии с планом, который начал вырисовываться передо мной почти 15 лет назад. В то время я был аспирантом, специализировавшимся по теоретической физике, и моя диссертация была близка к завершению. То счастливое обстоятельство, что я с увлечением прослушал пробный университетский курс по физике, читавшийся для неспециалистов, позволило мне впервые получить некоторое представление об истории науки. К моему полному удивлению, это знакомство со старыми научными теориями и самой практикой научного исследования в корне подорвало некоторые из моих основных представлений о природе науки и причинах ее достижений.

Я имею в виду те представления, которые ранее сложились у меня как в процессе научного образования, так и в силу давнего непрофессионального интереса к философии науки. Как бы то ни было, несмотря на их возможную пользу с педагогической точки зрения и их общую достоверность, эти представления ничуть не были похожи на картину науки, вырисовывающуюся в свете исторических исследований. Однако они были и остаются основой для многих дискуссий о науке, и, следовательно, тот факт, что в ряде случаев они не являются правдоподобными, заслуживает, по-видимому, пристального внимания. Результатом всего этого был решительный поворот в моих планах, касающихся научной карьеры, поворот от физики к истории науки, а затем, постепенно, от собственно историко-научных проблем обратно к вопросам более философского плана, которые первоначально и привели меня к истории науки. Если не считать нескольких статей, настоящий очерк является первой из моих опубликованных работ, в которых доминируют именно эти вопросы, занимавшие меня на ранних этапах работы. До некоторой степени он представляет собой попытку объяснить самому себе и коллегам, как случилось, что мои интересы сместились от науки как таковой к ее истории в первую очередь.

Первая возможность углубиться в разработку некоторых из тех идей, которые изложены ниже, представилась мне, когда я в течение трех лет проходил стажировку при Гарвардском университете. Без этого периода свободы переход в новую область научной деятельности был бы для меня куда более трудным, а может быть, даже и невозможным. Часть своего времени в эти годы я посвящал именно изучению истории науки. С особым интересом я продолжал изучать работы А. Койре и впервые обнаружил работы Э. Мейерсона, Е. Мецгер и А. Майер[1 - Особое влияние на меня оказали работы: А. Koyre. Etudes Galileennes, 3 vols. Paris, 1939; E. Meyerson. Identity and Reality. New York, 1930; H. Metzger. Les doctrines chimiques en France du debut du XVII a la fin du XVIII siecle. Paris, 1923; H. Metzger. Newton, Stahl, Boerhaave et la doctrine chimique. Paris, 1930; A. Maier. Die Vorlaufer Galileis im 14. Jahrhundert («Studien zur Naturphilosophie der Sp?tscholastik». Rome, 1949).].

Эти авторы более отчетливо, чем большинство других современных ученых, показали, что значило мыслить научно в тот период времени, когда каноны научного мышления весьма отличались от современных. Хотя я все больше и больше ставлю под сомнение некоторые из их частных исторических интерпретаций, их работы вместе с книгой А. Лавджоя «Великая цепь бытия» были одним из главных стимулов для формирования моего представления о том, какой может быть история научных идей. В этом отношении более важную роль сыграли только сами тексты первоисточников.

В те годы я потратил, однако, много времени на разработку областей, не имеющих явного отношения к истории науки, но тем не менее, как сейчас выясняется, содержащих ряд проблем, сходных с проблемами истории науки, которые привлекли мое внимание. Сноска, на которую я натолкнулся по чистой случайности, привела меня к экспериментам Ж. Пиаже, с помощью которых он разъяснил как различные типы восприятия на разных стадиях развития ребенка, так и процесс перехода от одного типа к другому[2 - Особую важность для меня имели два сборника исследований Ж. Пиаже, поскольку они описывали понятия и процессы, которые также непосредственно формируются в истории науки: «The Child's Conception of Causality». London, 1930; «Les notions de mouvement et de vitesse chez 1'enfant». Paris, 1946.]. Один из моих коллег предложил мне почитать статьи по психологии восприятия, в особенности по гештальтпсихологии; другой познакомил меня с соображениями Б.Л. Уорфа относительно воздействия языка на представление о мире; У. Куайн открыл для меня философские загадки различия между аналитическими и синтетическими предложениями[3 - Уже потом статьи Б. Л. Уорфа были собраны Дж. Кэрролом в

книге: «Language, Thought, and Reality – Selected Writings of Benjamin Lee Whorf». New York, 1956. У. Куайн выразил свои идеи в статье «Two Dogmas of Empiricism», перепечатанной в его книге: «From a Logical Point of View». Cambridge, Mass., 1953, р. 20–46.]. В ходе этих случайных занятий, на которые у меня оставалось время от стажировки, мне удалось натолкнуться на почти неизвестную монографию Л. Флека «Возникновение и развитие научного факта» (Entstehung und Entwicklung einer wissenschaftlichen Tatsache. Basel, 1935), которая предвосхитила многие мои собственные идеи. Работа Л. Флека вместе с замечаниями другого стажера, Фрэнсиса Х. Саттона, заставила меня осознать, что эти идеи, возможно, следует рассматривать в рамках социологии научного сообщества. Читатели найдут дальше мало ссылок на эти работы и беседы. Но я обязан им очень многим, хотя сейчас нередко уже не могу полностью осознать их влияние.

На последнем году своей стажировки я получил предложение прочитать курс лекций для Института Лоуэлла в Бостоне. Таким образом мне впервые представился случай испытать в студенческой аудитории мои еще не до конца сформировавшиеся представления о науке. Результатом была серия из восьми публичных лекций, прочитанных в марте 1951 года под общим названием «В поисках физической теории» (The Quest for Physical Theory). В следующем году я начал преподавать уже собственно историю науки. Почти 10 лет преподавания дисциплины, которой я ранее никогда систематически не занимался, оставляли мне мало времени для более точного оформления идей, которые и подвели меня когда-то к истории науки. К счастью, однако, эти идеи подспудно служили для меня источником ориентации и своего рода проблемной структурой большей части моего курса. Поэтому я должен благодарить своих студентов за неоценимые уроки как в отношении развития моих собственных взглядов, так и в отношении умения доступно излагать их другим. Те же самые проблемы и та же ориентация придали единство большей части по преимуществу исторических и на первый взгляд очень различных исследований, которые я опубликовал после окончания моей гарвардской стажировки. Несколько из этих работ было посвящено важной роли, которую играют те или иные метафизические идеи в творческом научном исследовании. В других работах исследуется способ, посредством которого экспериментальный базис новой теории воспринимается и ассимилируется приверженцами старой теории, несовместимой с новой. Одновременно во всех исследованиях описывается тот этап развития науки, который ниже я называю «возникновением» новой теории или открытия. Помимо этого, рассматриваются и другие подобного же рода вопросы.

Заключительная стадия настоящего исследования началась с приглашения провести один год (1958/59) в Центре современных исследований в области наук о поведении. Здесь снова я получил возможность сосредоточить все свое внимание на проблемах, обсуждаемых ниже. Но, пожалуй, более важно то, что, проведя один год в обществе, состоявшем главным образом из специалистов в области социальных наук, я неожиданно столкнулся с проблемой различия между их сообществом и сообществом ученых-естественников, среди которых обучался я сам. В особенности я был поражен количеством и степенью открытых разногласий между социологами по поводу правомерности постановки тех или иных научных проблем и методов их решения. Как история науки, так и личные знакомства заставили меня усомниться в том, что естествоиспытатели могут ответить на подобные вопросы более уверенно и более последовательно, чем их коллеги-социологи. Однако, как бы то ни было, практика научных исследований в области астрономии, физики, химии или биологии обычно не дает никакого повода для того, чтобы оспаривать самые основы этих наук, тогда как среди психологов или социологов это встречается сплошь и рядом. Попытки найти источник этого различия привели меня к осознанию роли в научном исследовании того, что я впоследствии стал называть «парадигмами». Под парадигмами я подразумеваю признанные всеми научные достижения, которые в течение определенного времени дают научному сообществу модель постановки проблем и их решений. Как только эта часть моих трудностей нашла свое решение, быстро возник первоначальный набросок этой книги.

Нет необходимости рассказывать здесь всю последующую историю работы над этим первоначальным наброском. Несколько слов следует лишь сказать о его форме, которую он сохранил после всех переработок. Еще до того, как первый вариант был закончен и в значительной степени исправлен, я предполагал, что рукопись выйдет в свет как том в серии «Унифицированная энциклопедия наук». Редакторы этой первой работы сначала стимулировали мои исследования, затем следили за их выполнением согласно программе и, наконец, с необычайным тактом и терпением ждали результата. Я многим обязан им, особенно Ч. Моррису за то, что он постоянно побуждал меня к работе над рукописью, и за полезные советы. Однако рамки «Энциклопедии» вынуждали излагать мои взгляды в весьма сжатой и схематичной форме. Хотя последующий ход событий в известной степени смягчил эти ограничения и представилась возможность одновременной публикации самостоятельного издания, эта работа остается все же скорее очерком, чем полноценной книгой, которую в конечном счете требует данная тема.

Поскольку основная цель для меня заключается в том, чтобы добиться изменения в восприятии и оценке хорошо известных всем фактов, постольку схематический характер этого первого труда не должен вызывать порицания. Напротив, читатели, подготовленные собственными исследованиями к такого рода изменению ориентации, необходимость которой я отстаиваю в своей работе, возможно, найдут ее форму и в большей мере наводящей на размышления, и более легкой для восприятия. Но форма краткого очерка имеет также и недостатки, и они могут оправдать то, что я в самом начале показываю некоторые возможные пути к расширению границ и углублению исследования, которые я надеюсь использовать в дальнейшем. Можно было бы привести гораздо больше исторических фактов, чем те, которые я упоминаю в книге. Кроме того, из истории биологии можно подобрать не меньше фактических данных, чем из истории физических наук. Мое решение ограничиться здесь исключительно последними продиктовано частично желанием достигнуть наибольшей связности текста, частично стремлением не выходить за рамки своей компетенции. Кроме того, представление о науке, которое должно быть здесь развито, предполагает потенциальную плодотворность множества новых видов как исторических, так и социологических исследований. Например, вопрос о том, каким образом аномалии в науке и отклонения от ожидаемых результатов все более привлекают внимание научного сообщества, требует детального изучения, так же, как и возникновение кризисов, которые могут быть вызваны неоднократными неудачными попытками преодолеть аномалию. Если я прав в том, что каждая научная революция меняет историческую перспективу для сообщества, которое переживает эту революцию, то такое изменение перспективы должно влиять на структуру учебников и исследовательских публикаций после этой научной революции. Одно такое следствие – а именно изменение в цитировании специальной литературы в научно-исследовательских публикациях, - вероятно, необходимо рассматривать как возможный симптом научных революций.

Необходимость крайне сжатого изложения вынуждала меня также отказаться от обсуждения ряда важных проблем. Например, мое различение допарадигмальных и постпарадигмальных периодов в развитии науки слишком схематично. Каждая из школ, конкуренция между которыми характерна для более раннего периода, руководствуется чем-то весьма напоминающим парадигму; бывают обстоятельства (хотя, как я думаю, довольно редко), при которых две парадигмы могут мирно сосуществовать в более поздний период. Одно лишь обладание парадигмой нельзя считать вполне достаточным критерием того переходного периода в развитии, который рассматривается во II разделе. Более важно то, что я ничего не сказал, если не считать коротких и

немногочисленных отступлений, о роли технического прогресса или внешних социальных, экономических и интеллектуальных условий в развитии наук. Достаточно, однако, обратиться к Копернику и к способам составления календарей, чтобы убедиться в том, что внешние условия могут способствовать превращению простой аномалии в источник острого кризиса. На том же самом примере можно было бы показать, каким образом условия, внешние по отношению к науке, могут оказать влияние на ряд альтернатив, которые имеются в распоряжении ученого, стремящегося преодолеть кризис путем предложения той или иной революционной реконструкции знания[4 - Эти факторы рассматриваются в книге: T.S. Kuhn. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought, Cambridge, Mass., 1957, p. 122-132, 270-271. Другие воздействия внешних интеллектуальных и экономических условий на собственно научное развитие иллюстрируются в моих статьях: «Conservation of Energy as an Example of Simultaneous Discovery». -«Critical Problems in the History of Science», ed. M. Clagett. Madison, Wis., 1959, p. 321–356; «Engineering Precedent for the Work of Sadi Carnot». – «Archives internationales d'histoire des sciences», XIII (1960), p. 247-251; «Sadi Carnot and the Cagnard Engine». - «Isis», LII (1961), р. 567-574. Следовательно, я считаю роль внешних факторов минимальной лишь в отношении проблем, обсуждаемых в этом очерке.]. Подробное рассмотрение такого рода следствий научной революции не изменило бы, я думаю, главных положений, развитых в данной работе, но оно наверняка добавило бы аналитический аспект, имеющий первостепенное значение для понимания прогресса науки.

Наконец (и возможно, что это самое важное), ограничения, связанные с недостатком места, помешали вскрыть философское значение того исторически ориентированного образа науки, который вырисовывается в настоящем очерке. Несомненно, что этот образ имеет скрытый философский смысл, и я постарался по возможности указать на него и вычленить его основные аспекты. Правда, поступая таким образом, я обычно воздерживался от подробного рассмотрения различных позиций, на которых стоят современные философы при обсуждении соответствующих проблем. Мой скептицизм, там, где он проявляется, относится скорее к философской позиции вообще, чем к какому-либо из четко развитых направлений в философии. Поэтому у некоторых из тех, кто хорошо знает одно из этих направлений и работает в его рамках, может сложиться впечатление, что я упустил из виду их точку зрения. Думаю, что они будут не правы, но эта работа не рассчитана на то, чтобы переубедить их. Чтобы попытаться это сделать, нужно было бы написать книгу более внушительного объема и вообще совсем иную.

Я начал это предисловие с некоторых автобиографических сведений с целью показать, чем я более всего обязан как работам ученых, так и организациям, которые способствовали формированию моего мышления. Остальные пункты, по которым я тоже считаю себя должником, я постараюсь отразить в настоящей работе путем цитирования. Но все это может дать только слабое представление о той глубокой личной признательности множеству людей, которые когда-либо советом или критикой поддерживали или направляли мое интеллектуальное развитие. Прошло слишком много времени с тех пор, как идеи данной книги начали приобретать более или менее отчетливую форму. Список всех тех, кто мог бы обнаружить в этой работе печать своего влияния, почти совпадал бы с кругом моих друзей и знакомых. Учитывая эти обстоятельства, я вынужден упомянуть лишь о тех, чье влияние столь значительно, что его нельзя упустить из виду даже при плохой памяти.

Я должен назвать Джеймса В. Конанта, бывшего в то время ректором Гарвардского университета, который первый ввел меня в историю науки и таким образом положил начало перестройке моих представлений о природе научного прогресса. Уже с самого начала он щедро делился идеями, критическими замечаниями и не жалел времени, чтобы прочитать первоначальный вариант моей рукописи и предложить важные изменения. Еще более активным собеседником и критиком в продолжение тех лет, когда мои идеи начали вырисовываться, был Леонард К. Неш, с которым я в течение 5 лет совместно вел основанный д-ром Конантом курс по истории науки. На более поздних стадиях развития моих идей мне очень не хватало поддержки Л.К. Неша. К счастью, однако, после моего ухода из Кембриджа его роль стимулятора творческих поисков взял на себя мой коллега из Беркли Стэнли Кейвелл. Кейвелл, философ, который интересовался главным образом этикой и эстетикой и пришел к выводам, во многом совпадающим с моими собственными, был для меня постоянным источником стимулирования и поощрения. Более того, он был единственным человеком, который понимал меня с полуслова. Подобный способ общения свидетельствует о таком понимании, которое давало Кейвеллу возможность указать мне путь, на котором я мог бы миновать или обойти многие препятствия, встретившиеся в процессе подготовки первого варианта моей рукописи.

После того как первоначальный текст работы был написан, многие другие мои друзья помогли мне в его доработке. Они, я думаю, простят меня, если я назову из них только четверых, чье участие было наиболее значительным и решающим: П. Фейерабенд из Калифорнийского университета, Э. Нагель из Колумбийского университета, Г.Р. Нойес из Радиационной лаборатории Лоуренса и мой студент

Дж. Л. Хейльброн, который часто работал непосредственно со мной в процессе подготовки окончательного варианта для печати. Я нахожу, что все их замечания и советы чрезвычайно полезны, но у меня нет основания думать (скорее есть некоторые причины сомневаться), что все, кого я упомянул выше, полностью одобряли рукопись в ее окончательном виде.

Наконец, моя признательность моим родителям, жене и детям существенно иного рода. Разными путями каждый из них также вложил частицу своего интеллекта в мою работу (причем так, что как раз мне труднее всего это оценить). Однако они также в различной степени сделали нечто еще более важное. Они не только одобряли меня, когда я начал работу, но и постоянно поощряли мое увлечение ею. Все, кто боролся за осуществление замысла подобных масштабов, сознают, каких усилий это стоит. Я не нахожу слов, чтобы выразить им свою благодарность.

Беркли, Калифорния

февраль, 1962

T. C. K.

l

Введение. Роль истории

История, если ее рассматривать не просто как хранилище анекдотов и фактов, расположенных в хронологическом порядке, могла бы стать основой для решительной перестройки тех представлений о науке, которые сложились у нас к настоящему времени. Представления эти возникли (даже у самих ученых) главным образом на основе изучения готовых научных достижений, содержащихся в классических трудах или позднее в учебниках, по которым каждое новое поколение научных работников обучается практике своего дела. Но целью подобных книг по самому их назначению является убедительное и доступное изложение материала. Понятие науки, выведенное из них, вероятно, соответствует действительной практике научного исследования не более, чем

сведения, почерпнутые из рекламных проспектов для туристов или из языковых учебников, соответствуют реальному образу национальной культуры. В предлагаемом очерке делается попытка показать, что подобные представления о науке уводят в сторону от ее магистральных путей. Его цель состоит в том, чтобы обрисовать хотя бы схематически совершенно иную концепцию науки, которая вырисовывается из исторического подхода к исследованию самой научной деятельности.

Однако даже из изучения истории новая концепция не возникнет, если продолжать поиск и анализ исторических данных главным образом для того, чтобы ответить на вопросы, поставленные в рамках антиисторического стереотипа, сформировавшегося на основе классических трудов и учебников. Например, из этих трудов часто напрашивается вывод, что содержание науки представлено только описываемыми на их страницах наблюдениями, законами и теориями. Как правило, вышеупомянутые книги понимаются таким образом, как будто научные методы просто совпадают с методикой подбора данных для учебника и с логическими операциями, используемыми для связывания этих данных с теоретическими обобщениями учебника. В результате возникает такая концепция науки, в которой содержится значительная доля домыслов и предвзятых представлений относительно ее природы и развития.

Если науку рассматривать как совокупность фактов, теорий и методов, собранных в находящихся в обращении учебниках, то в таком случае ученые это люди, которые более или менее успешно вносят свою лепту в создание этой совокупности. Развитие науки при таком подходе - это постепенный процесс, в котором факты, теории и методы слагаются во все возрастающий запас достижений, представляющий собой научную методологию и знание. История науки становится при этом такой дисциплиной, которая фиксирует как этот последовательный прирост, так и трудности, которые препятствовали накоплению знания. Отсюда следует, что историк, интересующийся развитием науки, ставит перед собой две главные задачи. С одной стороны, он должен определить, кто и когда открыл или изобрел каждый научный факт, закон и теорию. С другой стороны, он должен описать и объяснить наличие массы ошибок, мифов и предрассудков, которые препятствовали скорейшему накоплению составных частей современного научного знания. Многие исследования так и осуществлялись, а некоторые и до сих пор преследуют эти цели.

Однако в последние годы некоторым историкам науки становится все более и более трудным выполнять те функции, которые им предписывает концепция развития науки через накопление. Взяв на себя роль регистраторов накопления научного знания, они обнаруживают, что чем дальше продвигается исследование, тем труднее, а отнюдь не легче бывает ответить на некоторые вопросы, например о том, когда был открыт кислород или кто первый обнаружил сохранение энергии. Постепенно у некоторых из них усиливается подозрение, что такие вопросы просто неверно сформулированы и развитие науки – это, возможно, вовсе не простое накопление отдельных открытий и изобретений. В то же время этим историкам все труднее становится отличать «научное» содержание прошлых наблюдений и убеждений от того, что их предшественники с готовностью называли «ошибкой» и «предрассудком». Чем более глубоко они изучают, скажем, аристотелевскую динамику или химию и термодинамику эпохи флогистонной теории, тем более отчетливо чувствуют, что эти некогда общепринятые концепции природы не были в целом ни менее научными, ни более субъективистскими, чем сложившиеся в настоящее время. Если эти устаревшие концепции следует назвать мифами, то оказывается, что источником последних могут быть те же самые методы, а причины их существования оказываются такими же, как и те, с помощью которых в наши дни достигается научное знание. Если, с другой стороны, их следует называть научными, тогда оказывается, что наука включала в себя элементы концепций, совершенно несовместимых с теми, которые она содержит в настоящее время. Если эти альтернативы неизбежны, то историк должен выбрать последнюю из них. Устаревшие теории нельзя в принципе считать ненаучными только на том основании, что они были отброшены. Но в таком случае едва ли можно рассматривать научное развитие как простой прирост знания. То же историческое исследование, которое вскрывает трудности в определении авторства открытий и изобретений, одновременно дает почву глубоким сомнениям относительно того процесса накопления знаний, посредством которого, как думали раньше, синтезируются все индивидуальные вклады в науку.

Результатом всех этих сомнений и трудностей является начинающаяся сейчас революция в историографии науки. Постепенно, и часто до конца не осознавая этого, историки науки начали ставить вопросы иного плана и прослеживать другие направления в развитии науки, причем эти направления часто отклоняются от кумулятивной модели развития. Они не столько стремятся отыскать в прежней науке непреходящие элементы, которые сохранились до современности, сколько пытаются вскрыть историческую целостность этой науки в тот период, когда она существовала. Их интересует, например, не

вопрос об отношении воззрений Галилея к современным научным положениям, а скорее отношение между его идеями и идеями его научного сообщества, то есть идеями его учителей, современников и непосредственных преемников в истории науки. Более того, они настаивают на изучении мнений этого и других подобных сообществ с точки зрения (обычно весьма отличающейся от точки зрения современной науки), признающей за этими воззрениями максимальную внутреннюю согласованность и максимальную возможность соответствия природе. Наука в свете работ, порождаемых этой новой точкой зрения (их лучшим примером могут послужить сочинения Александра Койре), предстает как нечто совершенно иное, нежели та схема, которая рассматривалась учеными с позиций старой историографической традиции. Во всяком случае, эти исторические исследования наводят на мысль о возможности нового образа науки. Данный очерк преследует цель охарактеризовать хотя бы схематично этот образ, выявляя некоторые предпосылки новой историографии.

Какие аспекты науки выдвинутся на первый план в результате этих усилий? Вопервых, хотя бы в предварительном порядке, следует указать на то, что для многих разновидностей научных проблем недостаточно одних методологических директив самих по себе, чтобы прийти к однозначному и доказательному выводу. Если заставить исследовать электрические или химические явления человека, не знающего этих областей, но знающего, что такое «научный метод» вообще, то он может, рассуждая вполне логически, прийти к любому из множества несовместимых между собой выводов. К какому именно из этих логичных выводов он придет, по всей вероятности, будет определено его прежним опытом в других областях, которые ему приходилось исследовать ранее, а также его собственным индивидуальным складом ума. Например, какие представления о звездах он использует для изучения химии или электрических явлений? Какие именно из многочисленных экспериментов, возможных в новой для него области, он предпочтет выполнить в первую очередь? И какие именно аспекты сложной картины, которая выявится в результате этих экспериментов, будут производить на него впечатление особенно перспективных для выяснения природы химических превращений или сил электрических взаимодействий? Для отдельного ученого по крайней мере, а иногда точно так же и для научного сообщества, ответы на подобные вопросы часто весьма существенно определяют развитие науки. Например, во II разделе мы обратим внимание на то, что ранние стадии развития большинства наук характеризуются постоянным соперничеством между множеством различных представлений о природе. При этом каждое представление в той или иной мере выводится из данных научного наблюдения и предписаний научного метода, и все представления хотя бы в общих чертах не противоречат этим данным. Различаются же между собой

школы не отдельными частными недостатками используемых методов (все они были вполне «научными»), а тем, что мы будем называть несоизмеримостью способов видения мира и практики научного исследования в этом мире. Наблюдение и опыт могут и должны резко ограничить контуры той области, в которой научное рассуждение имеет силу, иначе науки как таковой не будет. Но сами по себе наблюдения и опыт еще не могут определить специфического содержания науки. Формообразующим ингредиентом убеждений, которых придерживается данное научное сообщество в данное время, всегда являются личные и исторические факторы – элемент по видимости случайный и произвольный.

Наличие этого элемента произвольности не указывает, однако, на то, что любое научное сообщество могло бы заниматься своей деятельностью без некоторой системы общепринятых представлений. Не умаляет он и роли той совокупности фактического материала, на которой основана деятельность сообщества. Едва ли любое эффективное исследование может быть начато прежде, чем научное сообщество решит, что располагает обоснованными ответами на вопросы, подобные следующим: каковы фундаментальные сущности, из которых состоит универсум? Как они взаимодействуют друг с другом и с органами чувств? Какие вопросы ученый имеет право ставить в отношении таких сущностей и какие методы могут быть использованы для их решения? По крайней мере в развитых науках ответы (или то, что полностью заменяет их) на вопросы, подобные этим, прочно закладываются в процессе обучения, которое готовит студентов к профессиональной деятельности и дает право участвовать в ней. Рамки этого обучения строги и жестки, и поэтому ответы на указанные вопросы оставляют глубокий отпечаток на научном мышлении индивидуума. Это обстоятельство необходимо серьезно учитывать при рассмотрении особой эффективности нормальной научной деятельности и при определении направления, по которому она следует в данное время. Рассматривая в III, IV, V разделах нормальную науку, мы поставим перед собой цель в конечном счете описать исследование как упорную и настойчивую попытку навязать природе те концептуальные рамки, которые дало профессиональное образование. В то же время нас будет интересовать вопрос, может ли научное исследование обойтись без таких рамок, независимо от того, какой элемент произвольности присутствует в их исторических источниках, а иногда и в их последующем развитии.

Однако этот элемент произвольности имеет место и оказывает существенное воздействие на развитие науки, которое будет детально рассмотрено в VI, VII и VIII разделах. Нормальная наука, на развитие которой вынуждено тратить почти все свое время большинство ученых, основывается на допущении, что научное

сообщество знает, каков окружающий нас мир. Многие успехи науки рождаются из стремления сообщества защитить это допущение, и если это необходимо - то и весьма дорогой ценой. Нормальная наука, например, часто подавляет фундаментальные новшества, потому что они неизбежно разрушают ее основные установки. Тем не менее до тех пор, пока эти установки сохраняют в себе элемент произвольности, сама природа нормального исследования дает гарантию, что эти новшества не будут подавляться слишком долго. Иногда проблема нормальной науки, проблема, которая должна быть решена с помощью известных правил и процедур, не поддается неоднократным натискам даже самых талантливых членов группы, к компетенции которой она относится. В других случаях инструмент, предназначенный и сконструированный для целей нормального исследования, оказывается неспособным функционировать так, как это предусматривалось, что свидетельствует об аномалии, которую, несмотря на все усилия, не удается согласовать с нормами профессионального образования. Таким образом (и не только таким) нормальная наука сбивается с дороги все время. И когда это происходит - то есть когда специалист не может больше избежать аномалий, разрушающих существующую традицию научной практики, - начинаются нетрадиционные исследования, которые в конце концов приводят всю данную отрасль науки к новой системе предписаний (commitments), к новому базису для практики научных исследований. Исключительные ситуации, в которых возникает эта смена профессиональных предписаний, будут рассматриваться в данной работе как научные революции. Они являются дополнениями к связанной традициями деятельности в период нормальной науки, которые разрушают традиции.

Наиболее очевидные примеры научных революций представляют собой те знаменитые эпизоды в развитии науки, за которыми уже давно закрепилось название революций. Поэтому в IX и X разделах, где предпринимается непосредственный анализ природы научных революций, мы не раз встретимся с великими поворотными пунктами в развитии науки, связанными с именами Коперника, Ньютона, Лавуазье и Эйнштейна. Лучше всех других достижений, по крайней мере в истории физики, эти поворотные моменты служат образцами научных революций. Каждое из этих открытий необходимо обусловливало отказ научного сообщества от той или иной освященной веками научной теории в пользу другой теории, несовместимой с прежней. Каждое из них вызывало последующий сдвиг в проблемах, подлежащих тщательному научному исследованию, и в тех стандартах, с помощью которых профессиональный ученый определял, можно ли считать правомерной ту или иную проблему или закономерным то или иное ее решение. И каждое из этих открытий преобразовывало научное воображение таким образом, что мы в конечном счете

должны признать это трансформацией мира, в котором проводится научная работа. Такие изменения вместе с дискуссиями, неизменно сопровождающими их, и определяют основные характерные черты научных революций.

Эти характерные черты с особой четкостью вырисовываются из изучения, скажем, революции, совершенной Ньютоном, или революции в химии. Однако те же черты можно найти (и в этом состоит одно из основных положений данной работы) при изучении других эпизодов в развитии науки, которые не имеют столь явно выраженного революционного значения. Для гораздо более узких профессиональных групп, научные интересы которых затронуло, скажем, создание электромагнитной теории, уравнения Максвелла были не менее революционны, чем теория Эйнштейна, и сопротивление их принятию было ничуть не слабее. Создание других новых теорий по понятным причинам вызывает такую же реакцию со стороны тех специалистов, чью область компетенции они затрагивают. Для этих специалистов новая теория предполагает изменение в правилах, которыми руководствовались ученые в практике нормальной науки до этого времени. Следовательно, новая теория неизбежно отражается на широком фронте научной работы, которую эти специалисты уже успешно завершили. Вот почему она, какой бы специальной ни была область ее приложения, никогда не представляет собой (или, во всяком случае, очень редко представляет) просто приращение к тому, что уже было известно. Усвоение новой теории требует перестройки прежней и переоценки прежних фактов, внутреннего революционного процесса, который редко оказывается под силу одному ученому и никогда не совершается в один день. Нет поэтому ничего удивительного в том, что историкам науки бывает весьма затруднительно определить точно дату этого длительного процесса, хотя сама их терминология принуждает видеть в нем некоторое изолированное событие.

Кроме того, создание новых теорий не является единственной категорией событий в науке, вдохновляющих специалистов на революционные преобразования в областях, в которых эти теории возникают. Предписания, управляющие нормальной наукой, определяют не только те виды сущностей, которые включает в себя универсум, но, неявным образом, и то, чего в нем нет. Отсюда следует (хотя эта точка зрения требует более широкого обсуждения), что открытия, подобные открытию кислорода или рентгеновских лучей, не просто добавляют еще какое-то количество знания в мир ученых. В конечном счете это действительно происходит, но не раньше, чем сообщество ученых-профессионалов сделает переоценку значения традиционных экспериментальных процедур, изменит свое понятие о сущностях, с которым оно давно сроднилось, и в процессе этой перестройки внесет видоизменения и в

теоретическую схему, сквозь которую оно воспринимает мир. Научный факт и теория в действительности не разделяются друг от друга непроницаемой стеной, хотя подобное разделение и можно встретить в традиционной практике нормальной науки. Вот почему непредвиденные открытия не представляют собой просто введения новых фактов. По этой же причине фундаментально новые факты или теории качественно преобразуют мир ученого в той же мере, в какой количественно обогащают его.

В дальнейшем мы подробнее остановимся на этом расширенном понятии природы научных революций. Известно, что всякое расширение понятия делает неточным его обычное употребление. Тем не менее я и дальше буду говорить даже об отдельных открытиях как о революционных, поскольку только таким образом можно сравнить их структуру с характером, скажем, коперниканской революции, что и делает, по моему мнению, это расширенное понятие важным. Предыдущее обсуждение показывает, каким образом будут рассмотрены дополняющие друг друга понятия нормальной науки и научных революций в девяти разделах, непосредственно следующих за данным. В остальных частях работы предпринимаются попытки осветить еще три кардинальных вопроса. В XI разделе путем обсуждения традиций учебников выясняется, почему раньше так трудно бывало констатировать наступление научной революции. XII раздел описывает соперничество между сторонниками старых традиций нормальной науки и приверженцами новых, которое характерно для периода научных революций. Таким образом, рассматривается процесс, который мог бы в какой-то мере заменить в теории научного исследования процедуры подтверждения или фальсификации, тесно связанные с нашим обычным образом науки. Конкуренция между различными группами научного сообщества является единственным историческим процессом, который эффективно приводит к отрицанию некоторой ранее общепринятой теории или к признанию другой. Наконец, в XIII разделе будет рассмотрен вопрос, каким образом развитие науки посредством революций может сочетаться с явно уникальным характером научного прогресса. Однако данный очерк предлагает не более чем основные контуры ответа на поставленный вопрос. Этот ответ зависит от описания основных свойств научного сообщества, для изучения которых потребуется еще много дополнительных усилий.

Нет никакого сомнения, что некоторых читателей уже интересовал вопрос, могут ли конкретные исторические исследования способствовать концептуальному преобразованию, которое является целью данной работы. Рассуждая формально, можно прийти к выводу, что историческими методами эта цель не может быть достигнута. История, как мы слишком часто говорим,

является чисто описательной дисциплиной. А тезисы, предложенные выше, больше напоминают интерпретацию, а иногда имеют и нормативный характер. Кроме того, многие из моих обобщений касаются области социологии науки или социальной психологии ученых, хотя по крайней мере несколько из моих выводов выдержаны в традициях логики или эпистемологии. Может даже показаться, что в предыдущем изложении я нарушил широко признанное в настоящее время разделение между «контекстом открытия» и «контекстом обоснования». Может ли это смешение различных областей науки и научных интересов породить что-либо, кроме путаницы?

Отвлекшись в своей работе от этого и других подобных им различений, я тем не менее вполне сознавал их важность и ценность. В течение многих лет я полагал, что они связаны с природой познания. Даже сейчас я полагаю, что при соответствующем уточнении они могут еще принести нам немалую пользу. Несмотря на это, результаты моих попыток применить их, даже grosso modo[5 - в широком плане (итал.).], к реальным ситуациям, в которых вырабатывается, одобряется и воспринимается знание, оказались в высшей степени проблематичными. Эти различения теперь представляются мне скорее составными частями традиционной системы ответов как раз на те вопросы, которые были поставлены специально для получения этих ответов. Прежнее представление о них как об элементарных логических или методологических различениях, которые должны таким образом предвосхитить анализ научного знания, оказывается менее правдоподобным. Получающийся при этом логический круг совсем не обесценивает эти различения. Но они становятся частями некоторой теории и поэтому должны быть подвергнуты такому же тщательному анализу, какой применяется к теориям в других областях науки. Если по своему содержанию они не просто чистые абстракции, тогда это содержание должно быть обнаружено рассмотрением их применительно к данным, которые они призваны освещать. И тогда разве история науки не может предоставить нам обильный материал, к которому будут адекватно применимы наши теории познания?

Ш

На пути к нормальной науке

В данном очерке термин «нормальная наука» означает исследование, прочно опирающееся на одно или несколько прошлых научных достижений достижений, которые в течение некоторого времени признаются определенным научным сообществом как основа для его дальнейшей практической деятельности. В наши дни такие достижения излагаются, хотя и редко в их первоначальной форме, учебниками - элементарными или повышенного типа. Эти учебники разъясняют сущность принятой теории, иллюстрируют многие или все ее удачные применения и сравнивают эти применения с типичными наблюдениями и экспериментами. До того как подобные учебники стали общераспространенными, что произошло в начале XIX столетия (а для вновь формирующихся наук даже позднее), аналогичную функцию выполняли знаменитые классические труды ученых: «Физика» Аристотеля, «Альмагест» Птолемея, «Начала» и «Оптика» Ньютона, «Электричество» Франклина, «Химия» Лавуазье, «Геология» Лайеля и многие другие. Долгое время они неявно определяли правомерность проблем и методов исследования каждой области науки для последующих поколений ученых. Это было возможно благодаря двум существенным особенностям этих трудов. Их создание было в достаточной мере беспрецедентным, чтобы привлечь на длительное время группу сторонников из конкурирующих направлений научных исследований. В то же время они были достаточно открытыми, чтобы новые поколения ученых могли в их рамках найти для себя нерешенные проблемы любого вида.

Достижения, обладающие двумя этими характеристиками, я буду называть далее «парадигмами», термином, тесно связанным с понятием «нормальной науки». Вводя этот термин, я имел в виду, что некоторые общепринятые примеры фактической практики научных исследований - примеры, которые включают закон, теорию, их практическое применение и необходимое оборудование, - все в совокупности дают нам модели, из которых возникают конкретные традиции научного исследования. Таковы традиции, которые историки науки описывают под рубриками «астрономия Птолемея (или Коперника)», «аристотелевская (или ньютонианская) динамика», «корпускулярная (или волновая) оптика» и так далее. Изучение парадигм, в том числе парадигм гораздо более специализированных, чем названные мною здесь в целях иллюстрации, является тем, что главным образом и подготавливает студента к членству в том или ином научном сообществе. Поскольку он присоединяется таким образом к людям, которые изучали основы их научной области на тех же самых конкретных моделях, его последующая практика в научном исследовании не часто будет обнаруживать резкое расхождение с фундаментальными принципами. Ученые, научная деятельность которых строится на основе одинаковых парадигм, опираются на одни и те же правила и стандарты научной практики. Эта общность установок и видимая согласованность, которую они обеспечивают, представляют собой предпосылки для нормальной науки, то есть для генезиса и преемственности в традиции того или иного направления исследования.

Поскольку в данном очерке понятие парадигмы будет часто заменять собой целый ряд знакомых терминов, необходимо особо остановиться на причинах введения этого понятия. Почему то или иное конкретное научное достижение как объект профессиональной приверженности первично по отношению к различным понятиям, законам, теориям и точкам зрения, которые могут быть абстрагированы из него? В каком смысле общепризнанная парадигма является основной единицей измерения для всех изучающих процесс развития науки? Причем эта единица как некоторое целое не может быть полностью сведена к логически атомарным компонентам, которые могли бы функционировать вместо данной парадигмы. Когда мы столкнемся с такими проблемами в V разделе, ответы на эти и подобные им вопросы окажутся основными для понимания как нормальной науки, так и связанного с ней понятия парадигмы. Однако это более абстрактное обсуждение будет зависеть от предварительного рассмотрения примеров нормальной деятельности в науке или функционирования парадигм. В частности, оба эти связанные друг с другом понятия могут быть прояснены с учетом того, что возможен вид научного исследования без парадигм или по крайней мере без столь определенных и обязательных парадигм, как те, которые были названы выше. Формирование парадигмы и появление на ее основе более эзотерического типа исследования является признаком зрелости развития любой научной дисциплины.

Если историк проследит развитие научного знания о любой группе родственных явлений назад, в глубь времен, то он, вероятно, столкнется с повторением в миниатюре той модели, которая иллюстрируется в настоящем очерке примерами из истории физической оптики. Современные учебники физики рассказывают студентам, что свет представляет собой поток фотонов, то есть квантовомеханических сущностей, которые обнаруживают некоторые волновые свойства и в то же время некоторые свойства частиц. Исследование протекает соответственно этим представлениям или скорее в соответствии с более разработанным и математизированным описанием, из которого выводится это обычное словесное описание. Данное понимание света имеет, однако, не более чем полувековую историю. До того как оно было развито Планком, Эйнштейном и другими в начале нашего века, в учебниках по физике говорилось, что свет представляет собой распространение поперечных волн. Это понятие являлось выводом из парадигмы, которая восходит в конечном счете к работам Юнга и

Френеля по оптике, относящимся к началу XIX столетия. В то же время и волновая теория была не первой, которую приняли почти все исследователи оптики. В течение XVIII века парадигма в этой области основывалась на «Оптике» Ньютона, который утверждал, что свет представляет собой поток материальных частиц. В то время физики искали доказательство давления световых частиц, ударяющихся о твердые тела; ранние же приверженцы волновой теории вовсе не стремились к этому[6 - J. Priestley. The History and Present State of Discoveries Relating to Vision, Light and Colours, London, 1772, p. 385–390.].

Эти преобразования парадигм физической оптики являются научными революциями, и последовательный переход от одной парадигмы к другой через революцию является обычной моделью развития зрелой науки. Однако эта модель не характерна для периода, предшествующего работам Ньютона, и мы должны здесь попытаться выяснить, в чем заключается причина этого различия. От глубокой древности до конца XVII века не было такого периода, для которого была бы характерна какая-либо единственная, общепринятая точка зрения на природу света. Вместо этого было множество противоборствующих школ и школок, большинство из которых придерживались той или другой разновидности эпикурейской, аристотелевской или платоновской теории. Одна группа рассматривала свет как частицы, испускаемые материальными телами; для другой свет был модификацией среды, которая находилась между телом и глазом; еще одна группа объясняла свет в терминах взаимодействия среды с излучением самих глаз. Помимо этих были другие варианты и комбинации этих объяснений. Каждая из соответствующих школ черпала силу в некоторых частных метафизических положениях, и каждая подчеркивала в качестве парадигмальных наблюдений именно тот набор свойств оптических явлений, который ее теория могла объяснить наилучшим образом. Другие наблюдения имели дело с разработками ad hoc[7 - Гипотетические построения, специально создаваемые для данного конкретного случая. - Примеч. пер.] или откладывали нерешенные проблемы для дальнейшего исследования[8 - V. Ronchi. Histoire de la lumi?re. Paris, 1956, chaps. I-IV.].

В различное время все эти школы внесли значительный вклад в совокупность понятий, явлений и технических средств, из которых Ньютон составил первую более или менее общепринятую парадигму физической оптики. Любое определение образа ученого, под которое не подходят по крайней мере наиболее творчески мыслящие члены этих различных школ, точно так же исключает и их современных преемников. Представители этих школ были учеными. И все же из любого критического обзора физической оптики до

Ньютона можно вполне сделать вывод, что, хотя исследователи данной области были учеными, чистый результат их деятельности не в полной мере можно было бы назвать научным. Не имея возможности принять без доказательства какуюлибо общую основу для своих научных убеждений, каждый автор ощущал необходимость строить физическую оптику заново, начиная с самых основ. В силу этого он выбирал эксперименты и наблюдения в поддержку своих взглядов относительно свободно, ибо не было никакой стандартной системы методов или явлений, которую каждый пишущий работу по оптике должен был применять и объяснять. В таких условиях авторы трудов по оптике апеллировали к представителям других школ ничуть не меньше, чем к самой природе. Такое положение нередко встречается во многих областях научного творчества и по сей день; в нем нет ничего такого, что делало бы его несовместимым с важными открытиями и изобретениями. Однако это не та модель развития науки, которой физическая оптика стала следовать после Ньютона и которая вошла в наши дни в обиход и других естественных наук.

История исследования электрических явлений в первой половине XVIII века дает более конкретный и более известный пример того, каким образом развивается наука, прежде чем выработает свою первую всеми признанную парадигму. В течение этого периода было почти столько же мнений относительно природы электричества, сколько и выдающихся экспериментаторов в этой области, включая таких, как Хауксби, Грей, Дезагюлье, Дюфе, Ноллет, Уотсон, Франклин и другие. Все их многочисленные концепции электричества имели нечто общее - в известной степени они вытекали из того или иного варианта корпускулярномеханической философии, которой руководствовались все научные исследования того времени. Кроме того, они были компонентами действительно научных теорий - теорий, которые частично были рождены экспериментом и наблюдением и которые отчасти сами детерминировали выбор и интерпретацию дальнейших проблем, подлежащих исследованию. Несмотря на то что все эксперименты были направлены на изучение электрических явлений и большинство экспериментаторов были знакомы с работами своих коллег, их теории имели друг с другом лишь весьма общее сходство[9 - D. Roller and D.H.D. Roller. The Development of the Concept of Electric Charge: Electricity from the Greeks to Coulomb («Harvard Case Histories in Experimental Science», Case 8, Cambridge, Mass., 1954); I.B. Cohen. Franklin and Newton: An Inquiry into Speculative Newtonian Experimental Science and Franklin's Work in Electricity as an Example Thereof. Philadelphia, 1956, chaps. VII-XII. Некоторыми деталями анализа в данном разделе я обязан еще не опубликованной статье моего студента Джона Л. Хейлброна. Пока эта работа не напечатана, более подробное и строгое, чем здесь, изложение того, как возникла парадигма Франклина, можно найти в: T.S. Kuhn.

The Function of Dogma in Scientific Research, in: A.C. Crombie (ed.), «Symposium on the History of Science». University of Oxford, July 9–15, 1961. Heinemann Educational Books, Ltd.].

Одна ранняя группа теорий, следуя практике XVII–XVIII веков, рассматривала притяжение и электризацию трением как основные электрические явления. Эта группа была склонна истолковывать отталкивание как вторичный эффект, обусловленный некоторым видом механического взаимодействия, и, кроме того, откладывать насколько возможно как обсуждение, так и систематическое исследование открытого Греем эффекта электрической проводимости. Другие «электрики» (как они сами себя называли) рассматривали притяжение и отталкивание как в равной мере элементарные проявления электричества и соответственно модифицировали свои теории и исследования. (Фактически эта группа была удивительно немногочисленна; даже теория Франклина никогда полностью не учитывала взаимное отталкивание двух отрицательно заряженных тел.) Но и эти исследователи, как и члены первой группы, сталкивались со многими трудностями при анализе и сопоставлении всех (кроме самых простейших) явлений, связанных с электропроводностью. Однако электропроводность стала исходной точкой еще для одной, третьей группы исследователей, склонной говорить об электричестве как о «флюиде», который мог протекать через проводники. Эту точку зрения они противопоставляли представлению об «истекании», источником которого служат тела, не проводящие электричества. Но в то же время этой группе также трудно было согласовать свою теорию с рядом эффектов отталкивания и притяжения. Только благодаря работам Франклина и его ближайших последователей была создана теория, которая смогла, можно сказать, с одинаковой легкостью учесть почти все без исключения эффекты и, следовательно, могла обеспечить и действительно обеспечила последующее поколение «электриков» общей парадигмой для их исследований.

Если не считать дисциплин, подобных математике и астрономии, в которых первые прочные парадигмы относятся к периоду их предыстории, а также тех дисциплин, которые, подобно биохимии, возникают в результате разделения и перестройки уже сформировавшихся отраслей знания, ситуации, описанные выше, типичны в историческом плане. Поэтому и в дальнейшем я буду использовать это, может быть, не очень удачное упрощение, то есть символизировать значительное историческое событие из истории науки единственным и в известной мере произвольно выбранным именем (например, Ньютон или Франклин). При этом я полагаю, что фундаментальные разногласия, подобные рассмотренным, характеризовали, например, учение о движении до

Аристотеля и статику до Архимеда, учение о теплоте до Блэка, химию до Бойля и Бургаве или историческую геологию до Геттона. В таких разделах биологии, как, например, учение о наследственности, первые парадигмы появились в самое последнее время; и остается полностью открытым вопрос, имеются ли такие парадигмы в каких-либо разделах социологии. История наводит на мысль, что путь к прочному согласию в исследовательской работе необычайно труден.

Тем не менее история указывает и на некоторые причины трудностей, встречающихся на этом пути. За неимением парадигмы или того, что предположительно может выполнить ее роль, все факты, которые могли бы, по всей вероятности, иметь какое-то отношение к развитию данной науки, выглядят одинаково уместными. В результате первоначальное накопление фактов является деятельностью, гораздо в большей мере подверженной случайностям, чем деятельность, которая становится привычной в ходе последующего развития науки. Более того, если нет причины для поисков какойто особой формы более специальной информации, то накопление фактов в этот ранний период обычно ограничивается данными, всегда находящимися на поверхности. В результате этого процесса образуется некоторый фонд фактов, часть из которых доступна простому наблюдению и эксперименту, а другие являются более эзотерическими и заимствуются из таких уже ранее существовавших областей практической деятельности, как медицина, составление календарей или металлургия. Поскольку эти практические области являются легко доступным источником фактов, которые не могут быть обнаружены поверхностным наблюдением, техника часто играла жизненно важную роль в возникновении новых наук.

Но хотя этот способ накопления фактов был существенным для возникновения многих важных наук, каждый, кто ознакомится, например, с энциклопедическими работами Плиния или с естественными «историями» Бэкона, написанными в XVII веке, обнаружит, что данный способ давал весьма путаную картину. Даже сомнительно называть подобного рода литературу научной. Бэконовские «истории» теплоты, цвета, ветра, горного дела и так далее наполнены информацией, часть которой малопонятна. Но главное, что здесь факты, которые позднее оказались объясненными (например, нагревание с помощью смешивания), поставлены в один ряд с другими (например, нагревание кучи навоза), которые в течение определенного времени оставались слишком сложными, чтобы их можно было включить в какую бы то ни было целостную теорию[10 - Ср. набросок естественной истории теплоты в «Новом Органоне» Бэкона: Ф. Бэкон. Соч. в 2-х томах. «Мысль», М., 1972, т. 2.]

Конец ознакомительного фрагмента.
notes
Примечания
1
Особое влияние на меня оказали работы: A. Koyre. Etudes Galileennes, 3 vols. Paris 1939; E. Meyerson. Identity and Reality. New York, 1930; H. Metzger. Les doctrines chimiques en France du debut du XVII a la fin du XVIII siecle. Paris, 1923; H. Metzger. Newton, Stahl, Boerhaave et la doctrine chimique. Paris, 1930; A. Maier. Die Vorlaufer Galileis im 14. Jahrhundert («Studien zur Naturphilosophie der Sp?tscholastik». Rome, 1949).
2

Особую важность для меня имели два сборника исследований Ж. Пиаже, поскольку они описывали понятия и процессы, которые также непосредственно формируются в истории науки: «The Child's Conception of Causality». London, 1930; «Les notions de mouvement et de vitesse chez 1'enfant». Paris, 1946.

Уже потом статьи Б. Л. Уорфа были собраны Дж. Кэрролом в книге: «Language, Thought, and Reality – Selected Writings of Benjamin Lee Whorf». New York, 1956. У. Куайн выразил свои идеи в статье «Two Dogmas of Empiricism», перепечатанной в его книге: «From a Logical Point of View». Cambridge, Mass., 1953, p. 20–46.

4

Эти факторы рассматриваются в книге: T.S. Kuhn. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge, Mass., 1957, р. 122-132, 270-271. Другие воздействия внешних интеллектуальных и экономических условий на собственно научное развитие иллюстрируются в моих статьях: «Conservation of Energy as an Example of Simultaneous Discovery». - «Critical Problems in the History of Science», ed. M. Clagett. Madison, Wis., 1959, p. 321-356; «Engineering Precedent for the Work of Sadi Carnot». - «Archives internationales d'histoire des sciences», XIII (1960), p. 247-251; «Sadi Carnot and the Cagnard Engine». - «Isis», LII (1961), p. 567-574. Следовательно, я считаю роль внешних факторов минимальной лишь в отношении проблем, обсуждаемых в этом очерке.

5

в широком плане (итал.).

6

J. Priestley. The History and Present State of Discoveries Relating to Vision, Light and Colours, London, 1772, p. 385–390.

Гипотетические построения, специально создаваемые для данного конкретного случая. - Примеч. пер.

8

V. Ronchi. Histoire de la lumi?re. Paris, 1956, chaps. I-IV.

9

D. Roller and D.H.D. Roller. The Development of the Concept of Electric Charge: Electricity from the Greeks to Coulomb («Harvard Case Histories in Experimental Science», Case 8, Cambridge, Mass., 1954); I.B. Cohen. Franklin and Newton: An Inquiry into Speculative Newtonian Experimental Science and Franklin's Work in Electricity as an Example Thereof. Philadelphia, 1956, chaps. VII–XII. Некоторыми деталями анализа в данном разделе я обязан еще не опубликованной статье моего студента Джона Л. Хейлброна. Пока эта работа не напечатана, более подробное и строгое, чем здесь, изложение того, как возникла парадигма Франклина, можно найти в: T.S. Kuhn. The Function of Dogma in Scientific Research, in: A.C. Crombie (ed.), «Symposium on the History of Science». University of Oxford, July 9–15, 1961. Heinemann Educational Books, Ltd.

10

Ср. набросок естественной истории теплоты в «Новом Органоне» Бэкона: Ф. Бэкон. Соч. в 2-х томах. «Мысль», М., 1972, т. 2.

Купить: https://tellnovel.com/ru/kun_tomas/struktura-nauchnyh-revolyuciy

Текст предоставлен ООО «ИТ»

Прочитайте эту книгу целиком, купив полную легальную версию: Купить